Open Maps of Involutive Quantales

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Bicategory of m-regular Involutive Quantales

Recently the theory of Morita equivalence for involutive quantales and the notion of the interior tensor products of Hilbert modules over involutive quantales evolved considerably (see e.g. Paseka, 2002 and Paseka, 2001). The present paper is an attempt to put a part of this theory in a broader context of the bicategory of m-regular involutive quantales. For facts concerning quantales in genera...

متن کامل

Modules on Involutive Quantales: Canonical Hilbert Structure, Applications to Sheaf Theory

We explain the precise relationship between two module-theoretic descriptions of sheaves on an involutive quantale, namely the description via so-called Hilbert structures on modules and that via so-called principally generated modules. For a principally generated module satisfying a suitable symmetry condition we observe the existence of a canonical Hilbert structure. We prove that, when worki...

متن کامل

Involutive Directions and New Involutive Divisions

In this paper, we propose the concept of involutive direction ss a vector representation for the concept of involutive division proposed by Gerdt and hi co-workers. With this representation, most of the properties of involutive divisions such as Noetherity, Artinity, and constructivity, can be greatly simplified. A new algorithm to compute the involutive completion is also given. Based on the v...

متن کامل

Girard Couples of Quantales

We introduce the concept of a Girard couple, which consists of two (not necessarily unital) quantales linked by a strong form of duality. The two basic examples of Girard couples arise in the study of endomorphism quantales and of the spectra of operator algebras. We construct, for an arbitrary sup-lattice S, a Girard quantale whose right-sided part is isomorphic to S.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Categorical Structures

سال: 2017

ISSN: 0927-2852,1572-9095

DOI: 10.1007/s10485-017-9506-y